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The problem of covering every site of a subsection of the honeycomb lattice 
with disjoint edges is considered. It is pointed out that a type of long-range 
order associated to such coverings can occur, so that different phases can 
arise as a consequence of the subsection's boundaries. These features are 
quantitatively investigated via a new analytic solution for a class of  strips of  
arbitrary widths, arbitrary lengths, and arbitrary long-range-order values. 
Relations to work on the dimer covering problem of statistical mechanics and 
especially to the resonance theory of benzenoid hydrocarbons are noted. 
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1. Introduction 

A general problem of interest in chemistry, physics, and mathematics is to 
enumerate the number  of  ways of choosing bonds from a network such that each 
node of the network has a single chosen bond incident upon it. In organic 
chemistry such choices for bonds of a ~--network (of sp2-hydridized carbon atoms) 
are termed Kekul~ structures. In statistical mechanics such structures are termed 
dimer coverings (representing a monolayer of  diatoms on a lattice surface). In 
mathematics these structures are termed perfect matchings or 1-factorizations of 
a graph. The logarithm of the number  of  these structures is (proportional to) the 
conformational entropy in statistical mechanics, and in organic chemistry it is 
related to the system's "resonance energy". 
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A variety of different enumeration methods have been developed for these Kekul6 
structures or dimer coverings: 

(a) several graph-theoretic combinatorial recursion methods [1-10] typically for 
rather special subclasses of graphs relevant in organic chemistry, or narrow strips 
of interest in statistical mechanics [11-14]; 

(b) a special technique [2, 5, 15-17] involving correspondences to a collection of 
self-avoiding walkers, evidently limited to certain subsections of the honeycomb 
(or graphite) lattice; 

(c) a determinantal method [2, 6, 18-20] where the square of the desired count 
is obtained as the determinant of the graph's adjacency matrix, being primarily 
restricted to the "benzenoid" graphs of organic chemistry; 

(d) a Pfaffian [21, 22] and a related permanental [23] method best applicable to 
bipartite planar graphs, especially with translational symmetry (and "cyclic" 
boundary conditions); 

(e) a transfer matrix method [24], such as is often applied to other translationally 
symmetric statistical mechanical problems; 

(f) a method [25-30] based upon the enumeration of the much less numerous 
"Clar" graphs, though apparently simply applicable only to special subclasses 
of benzenoid structures; 

(g) several other methods [31-35] based upon solutions of other (equivalent or 
related) transformed problems, especially in the case of subsections of the 
honeycomb lattice; 

(h) some additional methods [20, 36-39] based upon computer intensive counting, 
but applicable to rather arbitrary not overly large benzenoid subgraphs. 

Often these various methods of solution seem to have been developed (occasion- 
ally with some duplication) independently in either organic chemistry or statistical 
mechanics. 

In both fields it has been noted that there are some unusual features which arise 
with subsections of the honeycomb (or graphite) lattice. This problem concerns 
the effect of the boundary upon the enumeration. Thus, Stein and Brown [20] 
note that the enumeration appears to extrapolate to different large lattice limits, 
depending upon the shape of the edges. They suggest that "even in arbitrarily 
large graphite layers, average 7r-electron energies may depend upon the nature 
of the edges". Correspondingly Elser [34,40] obtains a boundary-dependent 
enumeration and says that "a bulk limit of the entropy does not exist". Later 
choosing the boundary to maximize his entropy per site Elser obtains a value 
substantially less than that previously found [34] for a lattice with cyclic boundary 
conditions. 

In fact these seemingly anomalous results for the honeycomb lattice are linked 
to a type of long-range order, which has already been discussed [41-44] for the 
occurrence of "solitonic" excitations in 7r-network polymers. This long-range 
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Fig. 1. Two representative Kekul6 structures on 
a width w = 3 strip. The structures have Q = 1 
and Q = 2 bonds  (in a and b) at each posit ion 
along the strip 

order is most easily introduced in terms of examples on narrow strips cut from 
the honeycomb lattice. Thus, in Fig. la  the type of Kekul6 structure (or dimer 
covering) shown there has one longitudinal cr-bond (or dimer) at each position 
along the strip as marked by a transverse dotted line. But the type of structure 
in Fig. lb has two longitudinal cr-bonds at each position. The crucial point here 
is that there are no Kekul6 structures that have different numbers of  longitudinal 
7r-bonds at different positions. The number of such bonds at any position along 
the strip will be denoted by Q. For a strip of width w it can be seen that Q may 
vary from 0 to w depending upon the nature of the strip ends. (Also, this 
long-range-order feature is closely related to the enumeration procedure of (b) 
involving [2, 15-17] a correspondence to Q self-avoiding directed walkers; the 
retention of our long-range-order is equivlaent to the conservation of walkers.) 

Here for such subsections of the honeycomb lattice we explicitly enumerate the 
number of Kekul6 structures for arbitrary choices of the long-range-order para- 
meter Q, arbitrary strip widths w, and arbitrary strip lengths L. Allowance is 
made for a variety of different types of strip ends. As a consequence the different 
anomalies noted earlier are clarified. It is argued that, at least physically and 
chemically, there are bulk limits for entropy (and resonance energy), and the 
manner of approach of the solution to that obtained with cyclic boundary 
conditions is found. As a further point of interest some notable oscillations in 
bond orders are studied. 

The analytic solution behind these observations proceeds via a transfer matrix 
method, which has not previously been applied to the honeycomb lattice (though 
it takes a "simple" form related to many-body methodology for Q independent 
particles). 

2. Transfer matrix formulation 

The formulation of the problem in an amenable manner proceeds via a 
consideration of the local nature of a Kekul6 structure at a position along the 
length of the strip. At such a longitudinal position there will be Q longitudinal 
cr-bonds (or dimers) occupying the w longitudinal network bonds available there. 
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T h e  local s tate  at this longitudinal  posi t ion is then indicated as 

Iml, m2, . . . , mQ) =-Ira(Q))  (2.1) 

in terms of  the ordered transverse posit ions rnl, m 2 , . . . ,  m o of  these 7r-bonds. 
With the ne twork  bonds  posi t ioned sequentially f rom 1 to w, as in Fig. 2, the 
local state o f  (2.1) satisfies 

0 < rnl < m2 <"  �9 �9 < mQ -< w. (2.2) 

Because o f  the effective glide-plane translational  symmetry  along the strip, the 
transverse posit ions at the next longitudinal  posi t ion are reversed, as indicated 
in Fig. 2a. For  example the Q = 3 local states in Fig. 2b are ]4, 5, 8) and ]2, 5, 7) 
at the longitudinal  posi t ions on the left and right, respectively. 

Next  we note the correlations between one local state and the one at an adjacent 
( longitudinal)  position. Only  certain I p ( Q ) )  may follow a given Ira(Q)). In 
part icular  if we define intervals o f  successive integers 

I ( m i _ l ,  mi) --- {w - m i 4- 1 , . . . ,  w - mi-1}, i = 1 to Q (2.3) 

(with m0-= 0), then it turns out  that  ]p(Q))  can follow Ira(Q))  if [41] 

p q - i + l  c l ( m i _ l ,  mi), i = 1 to Q. (2.4) 

This is most  readily unders tood  f rom a "geometr ica l"  examinat ion o f  the 
circumstance in Fig. 2b where for  Im(3)) = 14, 5, 8) one sees that the 12 adjacent 
al lowed local states are IPl, 5, P3) with 

Pl E {2, 3, 4} = I (5 ,  8) and P3 E {6, 7, 8, 9} = I (0 ,  4). (2.5) 

The set o f  condit ions o f  (2.4) may  be succinctly summarized by saying that m (Q) 
and p ( Q )  interlace 

w>--pQ> w--ml>-~pQ_l  > w - - m 2 > .  �9 �9 .-->pl > W--mQ>-O,  (2.6) 

a relation which actually is symmetrical  with respect to m ( Q )  and p ( Q ) .  
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Fig. 2. Structures to identify a local state at a position 
a b along a strip (of width w = 9), as discussed in the text 
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The transfer matrix acting on the space of local states has elements identifying 
allowed "adjacencies" 

1, p (Q)  interlaces re(Q), 
(p(Q)[T[m(Q))= 0, otherwise. (2.7) 

Now applying T to Ira(Q)) I times gives a vector whose p(Q) th  component 
(p(Q)[Tl[m(Q)) is the number of ways that a local state [p(Q)) can follow 
I m (Q)) at a distance I farther down the strip. As a consequence, the total number 
of Kekul6 structures on a strip with L longitudinal positions is given as 

No(w, L) = ( tl TL-11i), (2.8) 

where [i) and It) are initiating and terminating vectors whose components identify 
the permissible arrangements for longitudinal or-bonds at the extreme ends of 
the strip. GenerallY the forms of [i) and It) depend upon the particular nature 
of the strip ends, which also determine the relevant value of Q (at least if a global 
Kekul6 structure is sought). 

The eigenvalue problem for T 

T[A) = h[h) (2.9) 

can be used to recast the enumeration expression in a convenient form. Indeed 
if the eigenvectors are orthonormalized (as they surely can be since the symmetry 
of the interlacing relation implies T is Hermitian), then 

No(w , L ) = •  ( t lh)(hl i )h L-1. (2.10) 
A 

Further, for sufficiently long strips the maximum (magnitude) eigenvalue A e 
dominates, so that 

No(w , L)-> (t[AQ)(AQli)A~ -1, as L-~oo (2.11) 

is accurate to within a vanishingly small percentage error. 

3. Analytic solution 

The solution to the eigenvalue problem for general Q is developed by embedding 
the present problem in another on a larger vector space. This larger "Q-part icle" 
space has a basis of direct products 

I m l  X m 2 x .  �9 �9 x t o O )  ~ I m l )  x ]m2) x .  �9 �9 x line) (3.1) 

of (orthonormal) " l-part icle" basis vectors 

Imp), mi = 1 to w, i =  1 to Q. (3.2) 

The product space contains an antisymmetric subspace, with basis vectors 

1 ~ ( _ l ) % r l m ~ x m 2 x . . . x m e ) ,  Im(Q))-=~ 
0 < m 1 < m 2 < "  �9 �9 < mQ --< W, (3.3) 
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where the sum is over Q-particle permutations zr acting on the "particle positions". 
This antisymmetric subspace corresponds in a natural way to the local-state space 
of  section 2, 

Im( Q))~-->lrn( Q) ) (3.4) 

since the rni are subject to the same constraints in both spaces. 

Next we consider a Q-fold direct product matrix 

(,r)• x,'r x,'r x . .  . x , r  (3.5) 

acting on the (Q-particle) direct-product space. Here the 1-particle operator ,t is 
the same as a Q = 1 transfer matrix 

1, w~_p>w-m>_O, (3.6) 
(pl'rlm)= 0, otherwise. 

Clearly (7) • commutes with the permutat ions ~r and so leaves the antisymmetric 
subspace of (3.3) invariant. To establish the representation of (7) • on this 
antisymmetric subspace we examine the matrix elements 

(P( Q)I('t)XQIm( Q)) =-~s  y, ( - 1 ) ~ ' ( P l  x . . .  xpol~-t( , t)•  I x . . .  x rno) 
~,Tr '  

= E ( - - 1 ) ~ ( p l x ' ' ' X P Q I T r ( ' r ) X Q [ m l x ' ' ' X m Q )  
,rr 

= 2 " ' "  ( - 1 ) ' ( p , x ' ' "  x p o l r r l n ,  x . . . x  he) 
n 1 n Q  7r 

(3.7) 

where the mi are an increasing sequence so that the ranges of  summation for the 
n; decrease with increasing i. There are some index sets n l , . . . ,  no that occur 
only once in the Q-fold n~-sums of  (3.7); these index sets are those with ng 
I(m~_l, m~), i = 1 to Q. Other index sets arising in the Q-fold sums, i.e., those 
with two or more n~ in some of the I(mi-1, mi), arise repeatedly with their 
arguments permuted about  such that half  the permutations are odd and half are 
even. (Such a division into different parity permutations follows since the set of  
these permutat ions form a group which is just a product  of  "symmetr ic"  groups, 
which so divide.) Now when two or more nj occur in some of the I(mi_~, m~) 
and when the index set coincides with that of  p(Q), for every permutat ion 7r 
carrying one of the sequences to p(Q) there will be an opposite parity permutation 
(differing from zr by an initial transposition of two nj in the same interval 
I(mi_l, mi)) carrying another  sequence to p (Q) ;  and hence the matrix element 
will be zero. The nonzero matrix elements will have a sign ( - 1 )  ~ where o- is the 
permutation that reorders n(Q) to n'(Q)---nQ, nQ-1, . . . ,  nl. This permutat ion o- 
evidently consists of  disjoint transpositions whose number  is i (Q/2) ,  the integer 
part  of  Q/2. Thus we have 

[ ( - 1 )  i(O/2), m(Q) in ter lacesp(Q)  

(P(Q)I('r)• = ~ 10, otherwise. 
(3.8) 
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Using [. ]A to indicate a restriction to the antisymmetric subspace and comparing 
(3.8) with (2.7), we find 

[(~)• = (_l)i(O/2)T (3.9) 

a simple relation to the desired transfer matrix. 

Because the antisymmetric subspace is invariant under (a') •176 the eigensolutions 
of [('r)• A are just a subset of those of (,r) •176 In particular the eigenvalues are 
just products of those hk, k = 1 to w, for a'. Then the eigenvalues of T are 

Q 
hk(O)=(--1) i(Q/2) ~ h~, ,  O<kl<k2<. ' .<ko<-w (3.10) 

and the corresponding eigenvector's components are 

(m(Q)lhk(o)) = (m(Q)lhk(O)) = det {(m,l)tk)} (3.11) 

where the "Slater determinant" here is that of the matrix with (i , j)th element 
(rn, lhkj). 

Finally the eigenvalues to ~r are 

Ak=(--1) k+l 2 s m ~ w + ] 2  ' k = l t o w  (3.12) 

and the orthonormal eigenvector components are 

2 (2k -1 )~w+l  met ' (ml)tk)- ~ sin m = l t o  w. (3.13) 

The validity of these equations may be checked upon application of (3.6) to these 
vectors [~)  specified by (3.13). 

4. Approaching the bulk limit 

For very long strips the Kekul6 count is dominated by the maximum eigenvalue 

AQ = 2-~ sin ( 2 ~  - 1  +1  2 ) } - '  (4.7) 

as results from (3.10) and (3.12). This eigenvalue, and hence the Kekul6 count, 
then increases monotonically with increasing Q for Q -  ( w -  1)/3, and following 
this it decreases monotonically with Q. That the maximum in AQ occurs at 
w~ Q = �89 as w -+ 00 is simply an indication that on the graphite lattice most Kekul6 
structures have rr-bonds with equal likelihood in each of the three equivalent 
directions. 

Another point of interest [41-44] is the possibility of degeneracy of two maximum- 
cardinality Kekul6 phases. Such a cardinality degeneracy occurs asymptotically 
when 

(20+_12) AQ 
2sin \ 2 w +  1 - A o + a = l  (4.2) 

as happens for integer w and Q if and only if 

w = 3 n + l ,  n =0,  1 , 2 , 3 , . . .  (4.3) 
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whence the two maximum-cardinality degenerate phases have Q = n and Q = 
n +  1. Such degeneracies (or more likely near-degeneracies for more realistic 
resonance-energy computations) have implications [42-44] for the possibility of 
solitonic excitations in the corresponding polymeric rr-network strips. (See the 
accompanying paper "Extended zr-networks with multiple spin-pairing phases: 
resonance-theory calculations on poly-polyphenanthrenes" in this journal.) 

In the large network limit (L-~ oo and w ~ oo) the Kekul6 count further asymptoti- 
cally factors with regard to a power of w. The resulting size consistent asymptotic 
expression is 

{Nq(w,L)}'/WL~A~W~exp-{Qln2+2fo 0 / 2 " .  In (sin x) dx},  (4.4) 

which is plotted in Fig. 3. The maximum value (at Q~ w = ~) of -1.3813564 yields 
the previous [15, 22, 32] counts for a honeycomb lattice with cyclic boundary 
conditions. (Note that the logarithm of the expression in (4.4) is the entropy per 
dimer.) This then illustrates that the entropy per site on a section of the honeycomb 
lattice is not limited to the (smaller) maximum value found by Elser [34]. 

It is to be emphasized that in the infinite lattice limit the entropy per site, or 
resonance energy, is quite well-defined, at least in a chemical or physical sense. 
Basically the energy cost of unpaired sites near the boundary is negligible in this 
limit, so long as the number of such sites scales no faster than the boundary 
length, which itself approaches an infinitesimal fraction of the whole. (This also 
requires that the absolute temperature be positive for the statistical mechanical 
application, and for the organic chemical application that the excitation energy 
for unpaired ~--electrons be finite.) Then such unpaired sites may be introduced 
so as to achieve the maximum cardinality Q-phase with a vanishingly small cost 
to the (free or resonance) energy per site. Hence the bulk limit is obtained the 
same as for a system with cyclic boundary conditions. With open ends the 
(relatively few) unpaired sites near the boundary may be expected to exhibit 
unusual reactivity. 

/r 
o 

1.4 

1.3 

1.2 

1 . 1  �84 

I ~ - -  ~ --O/W 
0.2 0.4 0.6 0.8 1.0 

Fig. 3. Asymptotic  number  of  Kekul6 structures per bond,  for the extended honeycomb (or graphite) 
lattice 
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A further point is that partition functions with different weights (or activities) x 
and y for longitudinal and diagonal dimers may be constructed. For the chain 
with cyclic boundary conditions at the strip ends this is 

Zw, L(X, y) = ~. xQLy(2W-20)LNQ(W, L) (4.5) 
Q=O 

the result for w, L~oo  then corresponding to previous work [15, 21, 22, 31, 32]. 

5. Strip ends and finite strips 

For smaller networks, or any circumstance where a global Kekul~ structure is 
sought, the boundaries determine Q. For our strips the determining feature is the 
nature of the strip ends (at the extreme left and right in Figs. 1 and 2). For the 
strip ends of Fig. 4a-d the associated respective Q-values are Q = 1, Q ~ w/3, 
Q ~ w/2, and Q = w/3. Thus edges as in b or d lead to greater counts than those 
in a or c, as is consistent with Brown and Stein's extrapolations [20] involving 
edges of types a, b and c. Another preferred type of edge is that occurring on 
the longitudinal sides of our strips�9 

For the type of strips considered here if the ends admit a particular value for 
the long-range order parameter Q, then the Kekul6 structure enumeration is given 
exactly as 

NQ(w, L)=~k(Q) (tlAk(Q))(hk(Q)li)2-Q(L-1)i~=l { sin 2ki - 12w+l ql.~-L+12j , (5.1) 

where the sum is over all ordered sequences k(Q) of distinct integers 0 < k~ < k2 < 
�9 �9 �9 < k o <- w. All the information concerning the strip ends is bound up in the 
value of Q and the coefficients (tlhk(O~)(hk(O~li) which are independent of the 
strip length L and which are a maximum for the dominant eigenvalue. This latter 

Fig. 4�9 A variety of strip ends 

>- 

a b c d 
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point is seen because the components of  the corresponding eigenvector are all 
positive (as established by the Frobenius-Perron theorem [45]), and because the 
components of [i) and It) are all non-negative. (The remaining non-maximum- 
eigenvalue eigenvectors being orthogonal to IAo) have comparable quantities of 
components of  both signs, and so tend toward orthogonality to l i) and It) too.) 
As an example for the Q = 1 edge of Fig. 4a the single longitudinal bond may 
be in any transverse position, so that It) = Ii)-- TIw), and we have 

(tiAk) (Ak[ i) = h2k(W[Ak)(hk[ W) = 2W +---~ c~ \~WW +1 2 ' (5.2) 

which may be seen to be quite sharply peaked at the maximum (k = 1) eigenvalue. 
Then the explicit enumeration for this class is 

N l ( w , L ) - 1  k~=l cot2 ( 2 k  : 1  2sin ( 2 k - 1  
2 w + l  _ \ 2 w + l  \ 2 w + l  (5.3) 

the w = 1, 2, and 3 subclasses have been previously treated [2, 5, 9] somewhat 
differently by methods which do not so explicitly manifest the asymptotic L ~ oo 
behavior, though they typically display more explicitly the count as an integer. 
A further comment in connection with (5.3) is that (at least for long strips) A 1/w 
approaches unity as w -* ~ so that [42] this class is not a size-consistent basis for 
computing energies, in the sense that the difference between the resultant energy 
per site and that of a single Kekul6 structure approaches 0 (as L--> oo). Again in 
such circumstances unpaired (at least to nearest neighbors) sites near the ends 
of  the strip should appear giving rise to an overall lower energy (per site). 

Development of expressions for yet other types of ends simply involves further 
choices of  the end states Ii) and It) followed by evaluation of the coefficients 
(tihk(Q))(hk(O) li). TO do this it is frequently possible and convenient to introduce 
more "primitive" end states [ i -  ) and I t -  ) corresponding to specifications one 
step farther back, i.e., to the left of  the "lettered" state positions in Fig. 4. Then 

li) = T l i -  ) 

It) = T i t - )  (5.4) 
(t[Ak(Q))(tiAk(Q)) = A2(o)(t -Ixk(O))(Ak(Q)li-). 

For the case of  Fig. 4b 
3 6 3Q 

] i - ) =  ~ ~ . - .  ~. [p(Q)), (5.5) 
pl=2 p2=5 pQ=3Q-1  

where Q = i[w/3]. Then, using standard methods for dealing with Slater deter- 
minants, one finds 

(hk(o) l i - ) - -  ( ~ )  ~ det {sin r2k" - 1 " 2  L_~._~_~_ (3 m _ 2) 7r ] 

+, , , ,  (5.6) 
L z w ~ I  J J  

where the term in brackets is the (m, n)th element of  the matrix whose determinant 
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Nt(4 , L) N2(4 , L) [N1(4, L)] T M  [N2(4, L)] I/4L 

1 4 4 1.41421 1.41421 
2 10 11 1.33352 1.34950 
3 30 31 1.32768 1.33131 
4 85 89 1.32004 1.32384 
5 246 256 1.31688 1.31951 
6 707 737 1.31439 1.31667 
7 2 037 2122 1.31274 1.31466 
8 5 864 6 110 1.31146 1.31315 
9 16 886 17 593 1.31048 1.31198 

10 48 620 50 657 1.30970 1.31104 
11 139 997 145 861 1.30905 1.31027 
12 403 104 419 990 1.30852 1.30964 
13 1 160 693 1 209 313 1.30806 1.30910 
14 3 342 081 3 482 078 1.30768 1.30864 
15 9 623 140 1 002 6244 1.30734 1.30823 

oo 1.30264 1.30264 

is be ing  taken.  Fo r  the  c i rcumstance  of  Fig. 4c a fo rmula  s imi lar  to (5.6) arises 
but  with the  a rguments  ( 3 m - 2 )  and ( 3 m - l )  r ep l aced  by  ( 2 m - l )  and  (2m).  
F o r  the  str ip end  o f  Fig. 4d a th i rd  sine func t ion  wou ld  a p p e a r  in each mat r ix  
e lement  o f  the  de t e rminan t  in (5.6). Also for  Fig. 4c and  d it is convenien t  to 
take  even a second  step b a c k  to give even more  pr imi t ive  (yet s impler )  ini t ia t ing 
states. Of  course ,  if  li) and  It) associa te  to different  Q values ,  then  there  are no 
(global)  Kekul6  structures.  Thus for the var ious  poss ib le  d is t inct  pai rs  o f  ends  
f rom Fig. 4 the  only  (genera l ly)  consis tent  pa i r  is {4b, d}. 

The a sympto t i c  degeneracy  o f  the  m a x i m u m  card ina l i ty  Kekul6  phases  for  wid th  
w~-3 n + 1 infinite str ips has  a co r r e spond ing  near  degeneracy  even for  different  
finite length  str ips whose  end  conf igurat ions  are  chosen  so as to fix Q = n and  
n + 1. Thus ,  for  Q = 1 (ends  of  the  type  in 4a) and  Q = 2 (ends as in Fig. 5), w = 4 
finite s t r ip  exact  Kekul6  counts  for  strips o f  up  to 15 in length  are given in Table  
1 a long wi th  [ N o ( 4 ,  L)] lzwL for  compar i son  with  Eq. (4.4). 

Fig. 5. The Q = 2 type of strip end used in the computations for Table 1 

6. Short-range order 

In  r e sonance- theore t i c  ca lcu la t ions  with the  va l e nc e -bond  H a m i l t o n i a n  for  strips 
o f  wid th  w -< 7, we have no ted  that  b o n d  orders  f luctuate in a ra ther  p r o n o u n c e d  
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manner as a function of  transverse position across the strip. This feature has an 
analog in the present Kekul6 structure enumeration problem which we can use 
to elucidate these earlier observations and to extend consideration to wider strips. 
That is, we here consider the fraction of  Kekul6 structures which have a ~--bond 
located on a particular longitudinal network bond. This so-called Pauling bond- 
order (for the given lattice bond) is in close quantitative [46-49] correspondence 
with bond lengths in aromatic benzenoids. 

In terms of  the transfer matrix formulation of  Sect. 2 the number of  structures 
having a 7r-bond at longitudinal position l and transverse position p is 

Z p (t[T~-l]m(Q))(m(Q)[Tt-~[i), (6.7) 
m(Q) 

where the sum is over all rn (Q) that have one of  the mi = p. With the supposition 
that the longitudinal position is well away from both ends, the asymptotic ( L ~  oo) 
form of this becomes 

~P A to-I( tlAQ)(Ao[m( Q))(m( Q)[Ao)(Aoli)A~ -1. 
re(Q) 

(6.2) 

Then taking the ratio of  this with NQ(w, L) as in (2.11), we find the corresponding 
Pauling bond order (at transverse position p) to be 

tip = Yf  (Ao[m(Q))(rn(Q)]Ao). (6.3) 
m(Q) 

After some manipulation of  the determinantal eigenvector solutions of (3.11), or 
alternatively realizing that (6.3) can simply be viewed as an expectation value of 
a one-particle number operator for a particle in position p, one obtains 

Q 

tip = E (Ak[p)(p[Ak). (6.4) 
k = l  

Then upon the use of (3.13) and some standard trigonometric manipulations, we 
find 

/3p 2w+1  1 - s i n  ~- 2 Q s i n (  7r~} (6.5) 
2p 

\ 2 w + l  ] J  

the desired result for arbitrary Q and w. 

The behavior of the bond-order  can be further clarified in terms of its fractional 
fluctuation 

fp f l p - Q / w  
Q/w (6.6) 
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Fig. 6. Bond-order oscillations for strips with Q = 8 

away from its mean value/3p = Q/w. In the limit of very wide strips (w ~ oo) 

1 
f P ~ - ( 2 Q  s in/or)  (sin 2Qx~)' (6.7) 

where x =-p~ w is the fractional distance across the strip of position p. Here in 
(6.7) the first term in parentheses is a slowly varying envelope function and the 
second term in parentheses is a rapidly oscillating function (at least for larger 
Q, say Q/w > 0 as w ~ oo) exhibiting the bond-order fluctuations we earlier noted 
in valence-bond calculations. Here the envelope quenches the oscillations upon 
moving away from a lateral edge, illustrated for Q = 8 in Fig. 6. For very wide 
strips and small x the envelope function reduces to ---- I /x  where 

l = �89 (6.8) 

is a correlation length (in units of the strip width) for quenching the bond-order 
oscillations. Initially the oscillation amplitudes die out (with distance from an 
edge) quite rapidly on a scale of their wavelength, since this wavelength is also 
L Over longer lengths this amplitude dies out rather slowly because the functional 
form I /x  for the envelope dies off rather slowly, say when compared with an 
otherwise common circumstance with a half-length l' and consequent envelope 
function 2 -x/r. In narrow strips (or more generally for small Q) the bond-order 
oscillations are quite notable all the way across the strip. Thence in resonance 
theory a special pattern of bond length variations is predicted near edges of our 
present longitudinal type. Likewise in statistical mechanics a type of mean dimer 
occupancy pattern is predicted. 

7. Conclusion 

We have established a new analytic enumeration of Kekul~ structures (or dimer 
coverings) on a range of subsections of the honeycomb lattice. The subsections 
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are of  arbi t rary width, length,  and  long-range order, though the width does not  
vary within one subsect ion and  the lateral edges are of  a par t icular  ("corrugated")  
type. The role of the strip ends is noted  to be rather different in the bulk  and  
finite limits, where the restr ict ion to "g loba l"  Kekul6 structures is, respectively, 

inappropr ia te  or appropr ia te .  When  inappropr ia te  there general ly occur a few 

unpa i r ed  sites (with f ract ional  n u m b e r  vanish ingly  small  in the bu lk  limit) near  
the strip ends and  which as a consequence  can be "reactive".  With the restriction 
to global  Kekul6 structures every single site is paired and  the strip ends govern 
the long-range order ing and  a l eng th - independen t  mult ipl icat ive factor in the 
enumera t ion  formula.  The findings clarify several apparen t  anomal ies  previously 
found  for the enumera t ion  problem on subsect ions of the honeycomb  lattice. 
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